Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Michelini, Maria del Carmen"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Studio teorico dell'attivazione dei legami C-H e C-C mediante cationi di attinidi in fase gassosa
    (2014-03-27) Di Santo, Emanuela; Russo, Nino; Michelini, Maria del Carmen
    Density functional theory calculations were performed to study the ability of thorium (Th+, Th2+) and uranium (U+, U2+ The potential energy surfaces were explored taking into consideration different spin states. A close description of the reaction pathways leading to different reaction products is presented, and the obtained results are compared with experimental data. ) cations to activate the C-H and C-C bonds of methane, ethane and propane in the gas-phase. Th+ activates the C-H bonds of methane and ethane, in contrast, U+ is inert in both reactions. Th2+ reacts with all three alkanes, whereas U2+ reacts with C2H6 and C3H8, with product distributions different than those of Th2+ The computed potential energy profiles, which all proceed by insertion, were used to evaluate the relationship between the energetics of the bare Th . + (2+) and U+ (2+) ions and the energies for C-H and C-C bond activation. It was found that the computed energetics for insertion are entirely consistent with the empirical model which relates insertion efficiency to the energy needed to promote the An+ (2+) ion from its ground state to a prepared divalent state with two non 5f valence electrons suitable for bond formation in {C-An+ (2+)-H} and {C-An+ (2+)-C} activated intermediates.

Unical - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche @ 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback