Big Data Analysis: Methodologies, Frameworks and Real-World Applications

dc.contributor.authorBranda, Francesco
dc.contributor.authorFortino, Giancarlo
dc.contributor.authorTalia, Domenico
dc.date.accessioned2025-11-28T08:57:15Z
dc.date.issued2023-06-28
dc.descriptionUniversità della Calabria. Corso di laurea in Ingegneria Informatica, Modellistica, Elettronica e Sistemistica (DIMES). Dottorato di ricerca in Information and Communication Technologies (ICT). Ciclo XXXV
dc.description.abstractInthelastyears,thecapacitytoproduceandcollectdatahasincreasedexpo- nentially.Thehugeamountofdatagenerated,commonlyreferredtoasBigData, thespeedatwhichitisproduced,anditsheterogeneityintermsofformatrepresent a challengetocurrentstorage,processing,andanalysiscapabilities.Thisscenario requiresthedesignandimplementationofnewarchitecturesandanalyticalplatform solutionsthatmustprocessBigDatatoextractcomplexpredictiveanddescriptive models.Today,high-performancecomputing(HPC)infrastructuressuchashighly parallelclusters,supercomputers,andcloudscanbeusedforprocessingandanalyz- ingmassivesourcesofreal-worlddatainvariousfields,includinggenomicsequencing andmedicalresearch,frauddetection,andweatherforecasting.Followingthesepre- liminaryobservations,thegoalofthisthesisistwofold.First,themainchallengesto besolvedforimplementinginnovativedataanalysisapplicationsonHPCsystemsare investigated.Inparticular,themainkeyresearchtopicsaddressedinclude:(i)stud- iesofsoftwaresystemsforBigDatastoring,processing,andanalysis;(ii)methods, techniques,andprototypesdesignedandusedtoimplementBigDatasolutionson massivedatasourcesrequiringtheuseofhigh-performancecomputingsystems;and (iii)designandprogrammingissuesforBigDataanalysisinExascalesystems,which willrepresentthenextcomputingstep.Second,severalinnovativeapplicationsand usecasesofBigDataanalyticsthatcanbeimplementedinlarge-scaleparallelsys- temsareproposed.Theseresearchcontributionsprovidenewinsightsandsolutions forextractingusefulknowledgefromlargevolumesofdata,describingmethodsand mechanismstosupportusers,practitioners,andscientistsworkingintheareaofBig Datainthedesignandexecutionofdataanalysistechniquesindifferentapplication domains.
dc.identifier.urihttp://hdl.handle.net/10955/5683
dc.language.isoen
dc.publisherUniversità della Calabria
dc.subjectbig data analysis
dc.subjecthigh-performance computing (HPC)
dc.subjectsocial data mining
dc.subjectmachine learning
dc.subjectinfectious diseases modelling
dc.titleBig Data Analysis: Methodologies, Frameworks and Real-World Applications
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Tesi_finale_dottorando_Branda_Francesco.pdf
Size:
28.15 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
16 B
Format:
Item-specific license agreed upon to submission
Description: