Dipartimento di Ingegneria Civile - Tesi di Dottorato
Permanent URI for this collectionhttps://lisa.unical.it/handle/10955/99
Questa collezione raccoglie le Tesi di Dottorato Dipartimento di Ingegneria Civile dell'Università della Calabria.
Browse
5 results
Search Results
Item Analysis of nonlinear phenomena in heterogeneous materials by means of homogenization and multiscale techniques(Università della Calabria, 2020-06-07) Pranno, Andrea; Critelli, Salvatore; Bruno, Domenico; Greco, FabrizioOver the past decade, scientific and industrial communities have shared their expertise to improve mechanical and structural design favoring the exploration and development of new technologies, materials and ad-vanced modeling methods with the aim to design structures with the highest structural performances. The most promising materials used in many advanced engineering applications are fiber- or particle-rein-forced composite materials. Specifically, materials with periodically or randomly distributed inclusions embedded in a soft matrix offer excel-lent mechanical properties with respect to traditional materials (for in-stance, the capability to undergo large deformations). Recent applica-tions of these innovative materials are advanced reinforced materials in the tire industry, nanostructured materials, high-performance structural components, advanced additive manufactured materials in the form of bio-inspired, functional or metamaterials, artificial muscles, tunable vi-bration dampers, magnetic actuators, energy-harvesting devices when these materials exhibit magneto- or electro-mechanical properties. To-day the scientific community recognizes that, to develop new advanced materials capable of satisfying increasingly restrictive criteria, it is vital fully understanding the relationship between the macroscopic behavior of a material, and its microstructure. Composite materials are charac-terized by complex microstructures and they are commonly subjected also to complex loadings, therefore their macroscopic response can be evaluated by adopting advanced strategies of micro-macro bridging, such as numerical homogenization and multiscale techniques. The aim of this thesis is to provide theoretical and numerical methods able to model the mechanical response of heterogeneous materials (fiber- or particle-reinforced composite materials) in a large deformation context predicting the failure in terms of loss of stability considering also the interaction between microfractures and contact. In the past literature, several theories have been proposed on this topic, but they are preva-lently limited to the analysis of microscopic and macroscopic instabili-ties for not damaged microstructures, whereas the problem of interac-tion between different microscopic failure modes in composite materi-als subjected to large deformations in a multiscale context still has not been investigated in-depth and it represents the main aspect of novelty of the present thesis. The thesis starts with a literature review on the previously announced topic. Then, the basic hypotheses of the numerical homogenization strategy are given together with a review of the most recurring mul-tiscale strategies in the modeling of the behavior of advanced composite materials following a classification based on the type of coupling be-tween the microscopic and the macroscopic levels. In addition, a theo-retical non-linear analysis of the homogenized response of periodic composite solids subjected to macroscopically uniform strains is given by including the effects of instabilities occurring at microscopic levels and the interaction between microfractures and buckling instabilities. Subsequently, the numerical results obtained were reported and dis-cussed. Firstly, the interaction between microfractures and buckling instabili-ties in unidirectional fiber-reinforced composite materials was investi-gated by means of the nonlinear homogenization theory. In such mate-rials, the investigated interaction may lead to a strong decrease in the compressive strength of the composite material because buckling causes a large increase in energy release rate at the tips of preexisting cracks favoring crack propagation or interface debonding. Thus, mi-crocracked composite materials characterized by hyperelastic constitu-ents and subjected to macrostrain-driven loading paths were firstly in-vestigated giving a theoretical formulation of instability and bifurcation phenomena. A quasi-static finite-strain continuum rate approach in a variational setting has been developed including contact and frictionless sliding effects. It worth noting that, the above developments show that non-standard self-contact terms must be included in the analysis for an accurate prediction of microscopic failure; these terms are usually ne-glected when contact is modelled in the framework of cohesive inter-face constitutive laws. The influence of the above-mentioned non-standard contributions on the instability and bifurcation critical loads in defected fiber-reinforced composites can be estimated in light of the results which will be presented in this thesis. Thus, the role of non-standard crack self-contact rate contributions to the stability and non-bifurcation conditions was pointed out by means of comparisons with simplified formulations and it was clearly shown that these contribu-tions have a notable role in an accurate prediction of the real failure behavior of the composite solid. Secondly, two multiscale modeling strategies have been adopted to an-alyze the microstructural instability in locally periodic fiber-reinforced composite materials subjected to general loading conditions in a large deformation context. The first strategy is a semiconcurrent multiscale method consisting in the derivation of the macroscopic constitutive re-sponse of the composite structure together with a microscopic stability analysis through a two-way computational homogenization scheme. The second approach is a novel hybrid hierarchical/concurrent mul-tiscale approach able to combine the advantages inherent in the use of hierarchical and concurrent approaches and based on a two-level do-main decomposition; such a method allows to replace the computation-ally onerous procedure of extracting the homogenized constitutive law for each time step through solving a BVP in each Gauss point by means of a macro-stress/macro-strain database obtained in a pre-processed step. The viability and accuracy of the proposed multiscale approaches in the context of the microscopic stability analysis in defected compo-site materials have been appropriately evaluated through comparisons with reference direct numerical simulations, by which the ability of the second approach in capturing the exact critical load factor and the boundary layer effects has been highlighted. Finally, the novel hybrid multiscale strategy has been implemented also to predict the mechanical behavior of nacre-like composite material in a large deformation context with the purpose to design a human body protective bio-inspired material. Therefore, varying the main micro-structural geometrical parameters (platelets aspect ratio and stiff-phase volume fraction), a comprehensive parametric analysis was performed analyzing the penetration resistance and flexibility by means of an in-dentation test and a three-point bending test, respectively. A material performance metric, incorporating the performance requirements of penetration resistance and flexibility in one parameter and called pro-tecto-flexibility, was defined to investigate the role of microstructural parameters in an integrated measure. The results have been revealed that advantageous microstructured configurations can be used for the design and further optimization of the nacre-like composite material.Item La valutazione della vulnerabilità sismica degli edifici storici in muratura mediante diversi approcci(Università della Calabria, 2020-04-16) Porzio, Saverio; Critelli, Salvatore; Oliverio, Renato SanteLe costruzioni in muratura rappresentano gran parte del tessuto costruito e la loro salvaguardia riveste un ruolo sociale e culturale primario. Basti pensare che molti di questi edifici – quali chiese, palazzi, castelli, torri – si pongono come simboli delle città in cui riconoscersi e riconoscere le città stesse. L’interesse di studiosi e ricercatori è, dunque, rivolto alla definizione di strumenti utili alla valutazione della vulnerabilità sismica delle costruzioni storiche in muratura. Vari metodi sono attualmente in uso per la valutazione sismica dei manufatti murari, così come diversificate sono le strategie per simulare il comportamento meccanico dei materiali costituenti. Ai consolidati metodi grafici per la valutazione della sicurezza statica degli archi, volte e cupole, si sono aggiunti nuovi modelli di analisi favoriti dall’introduzione del calcolo numerico. Questo lavoro di tesi mira a valutare il comportamento delle costruzioni storiche in muratura attraverso alcuni dei diversi approcci attualmente impiegati e convalidati dalla comunità scientifica. Gli studi eseguiti partono dall’analisi di alcuni degli elementi costitutivi maggiormente rappresentativi in un edificio, quali volte e pareti, per proseguire con analisi globali attuate con differenti strategie di modellazione. Relativamente alle analisi locali, le indagini sulle volte composte – vale a dire quelle originate dall’intersezione di due volte a botte – sono state svolte in termini statici applicando le teorie dell’analisi membranale, mentre per le pareti murarie si è valutata la loro risposta nei confronti delle azioni fuori dal piano al fine di evidenziarne il contributo nella risposta sismica d’insieme del fabbricato. Riguardo alle analisi globali, uno dei principali strumenti per la valutazione della risposta sismica è rappresentato dall’analisi statica non lineare, chiamata anche analisi pushover, la quale abbina accuratezza dei risultati ad un non eccessivo tempo di calcolo. Tuttavia, nelle strutture più irregolari, l’utilizzo degli approcci canonici – che richiedono la lettura degli spostamenti solo di alcune parti del fabbricato – può portare a risultati completamente inesatti, sia a causa dell’insorgenza dei meccanismi locali di collasso che alla differente risposta della costruzione in relazione alle sue capacità duttili a livello locale. Quest’ultimo aspetto compete al tracciamento della curva di capacità della struttura che avviene, generalmente, considerando un unico punto di controllo: se questo si sposta poco, relativamente breve sarà il ramo della curva elasto-plastico dell’oscillatore equivalente; e viceversa. È per tale ragione che si è sviluppata una metodologia consistente nel considerare diversi punti di controllo, non scelti a priori, ma suggeriti dallo stato di danneggiamento individuato dalle simulazioni numeriche. All’interno della metodologia proposta, è stata definito un nuovo strumento grafico di rappresentazione degli spostamenti dei punti di controllo: l’evoluzione del danno è mostrata utilizzando delle sfere, i cui raggi sono proporzionali agli spostamenti rilevati ed il cui baricentro ha le stesse coordinate del punto di controllo che rappresenta. Le dimensioni delle sfere possono fornire informazioni sul danno occorso e sulla posizione dei punti deboli della struttura investigata, diventando così uno strumento utile per orientare le decisioni sulla tecnica di rinforzo strutturale più adeguata. La validazione della metodologia proposta è avvenuta confrontando – per un caso studio reale consistente in una costruzione di forma triangolare realizzata esclusivamente in muratura – i valori di accelerazione spettrale ottenuti mediante tutte le tipologie di approcci impiegati: dall’individuazione del moltiplicatore dei carichi mediante il teorema cinematico dell’analisi limite, applicato sul meccanismo di collasso fuori piano ritenuto più significativo, all’analisi dinamica non lineare eseguita prendendo in considerazione un accelerogramma artificiale spettro-compatibile, passando per la già citata analisi statica non lineare. I risultati mostrano una comparabilità di valori per gli approcci numerici evidenziando, invece, una discrepanza con quelli analitici a causa di diversi fattori, fra cui la non-raffinatezza dei metodi semplificati. Tuttavia, si sono dedotte informazioni dettagliate sul comportamento strutturale generale dell’edificio, nonché sulla sua sicurezza sismica. Il sommario della tesi comprende quanto segue: Capitolo 1 – Introduzione (argomenti trattati dalla tesi, revisione della letteratura, obiettivi e campo di applicazione); Capitolo 2 – illustra alcune applicazioni effettuate mediante le trattazioni analitiche discusse nello studio dello stato dell’arte; Capitolo 3 – riporta le investigazioni sismiche di alcuni casi studio basate sulla modellazione a telaio equivalente, con un’ultima parte dedicata all’utilizzo di tale strategia di modellazione per le analisi di vulnerabilità su scala territoriale attraverso l’utilizzo delle schede CARTIS-ReLUIS; Capitolo 4 – riporta le analisi numeriche basate sull’approccio FEM e la metodologia pushover a punti di controllo multipli messa a punto per l’analisi delle costruzioni con geometria irregolare in pianta; Note conclusive – presenta le conclusioni più importanti a cui si è giunti attraverso questa tesi, tra cui alcune tabelle utili ad orientare il professionista verso la scelta della strategia di valutazione più indicata per il particolare caso studio da analizzare. Masonry buildings are the main part of the building heritage and their preservation has a primarily social and cultural role. Many of these buildings – such as churches, palaces, castles, and towers – are recognizable and representative symbols of their cities. Therefore, practitioners and researchers are interested in defining useful tools for the evaluation of the seismic vulnerability of historic masonry buildings. Various methods are currently being used for the seismic assessment of masonry artifacts, as well as several strategies for simulating the mechanical behavior of materials being available. The introduction of numerical calculation has led to new analysis models, which support the graphical methods used for evaluating the static safety of arches, vaults, and domes. This thesis aims to evaluate the behavior of historic masonry structures by using some of the different approaches currently used and validated by the scientific community. The studies start from the analysis of some typical elements of a building, such as vaults and walls. Afterwards, global analyses are implemented with different modeling strategies. Regarding the local analyses: the investigations on compound vaults – namely those originating from the intersection at right angles of two barrel vaults – are carried out in a static framework by applying the membrane theory; while the out-of-plane response of masonry walls is evaluated in order to highlight their contribution in the overall seismic response of the building. Among the global analyses, the non-linear static analysis – also called pushover analysis – is one of the main tools for the evaluation of the seismic response of a building because it combines results accuracy with a reduced computational burden. However, the use of canonical approaches - which require the reading of the displacements of only some building points - can lead to inaccurate results in the most irregular structures. This is due both to the onset of local collapse mechanisms and to the different building response concerning its local ductile capabilities. These aspects are related to the capacity curve of the structure, which plots the displacements of a single control point: a short elastoplastic branch of the bilinear curve in the case of small displacements; and vice-versa. For this reason, a coupled numerical-geometrical methodology – to represent the results arising from pushover analysis – is developed by considering an appropriate number of control points, not set a priori but suggested by the state of damage detected through numerical simulations. A new graphic tool is defined to represent the displacements of the control points, and the damage evolution is shown by using spheres in which their radiuses are proportional to displacements detected, whereas each centroid has the same coordinates as the control point which it represents. The spheres’ dimensions can provide information about the damage occurred and the position of weak points of the investigated structure, so becoming a useful tool to orientate decisions about structural strengthening technique. In order to validate the proposed methodology, a comparison between the spectral acceleration values obtained through all approaches used is carried out, taking into account a real case study consisting of a triangular construction entirely made in masonry. These accelerations are based on: the load multiplier obtained from the most significant out-of-plane collapse mechanism is defined by means of the kinematic theorem of the limit analysis; the nonlinear dynamic analysis performed by considering an artificial spectrum-compatible accelerogram; the above nonlinear static analysis. The results showed comparable values for numerical approaches, highlighting a discrepancy instead with the analytical ones due to various factors, including the non-refinement of simplified methods. However, detailed information on the structural behavior of the building, as well as its seismic safety, are drawn clearly. The (summary) thesis comprises the following: Chapter 1 - Introduction (thesis topics, literature review, aims and scope); Chapter 2 - illustrates some analytical applications on compound vaults and out-of-plane mechanisms of masonry façades; Chapter 3 - reports the seismic investigations of some case studies based on equivalent frame modeling, with the last part dedicated to the use of this modeling strategy in the seismic vulnerability assessment at the territorial scale by using of CARTIS-ReLUIS forms; Chapter 4 - reports the numerical analyses based on the FEM approach and the multi-control point pushover methodology developed to assess irregular buildings; Concluding remarks - presents the most important conclusions reached through this thesis, including some useful tables to guide the practitioner towards the choice of the most suitable evaluation strategy for a particular case study.Item Analysis of fracture phenomena in concrete structures by means of cohesive modeling techniques(Università della Calabria, 2021-06-30) De Maio, Umberto; Critelli, Salvatore; Greco, Fabrizio; Nevone Blasi, PaoloStill today, the fracture phenomenon in cementitious materi-als is a research topic widely investigated by numerous research-ers in materials and structural engineering, since it involves many theoretical and practical aspects concerning both strength and durability properties of common concrete structures. In-deed, cracking is one of the main causes of the severe deteriora-tion of concrete structures, usually leading to an unacceptable re-duction of their serviceability time. The fracture processes, in-cluding onset, propagation, and coalescence of multiple cracks, arise in the structural members because of the low tensile strength of concrete, which is ultimately related to the existence of voids or undetected defects in the material microstructure.Such cracking processes significantly affect the global mechani-cal behavior of the concrete structures and may facilitate the in-gress of corrosive media; therefore, in the scientific community there is a strong interest in reducing cracks width to a minimum or in preventing cracking altogether. In the technical literature, several simplified numerical models, based on either linear-elas-tic or elastic-plastic fracture mechanics, are proposed to predict the fracture mechanisms during any stage of the lifetime of con-crete structures. However, the application of these models is somehow limited, due to their incapacity to capture the complex inelastic mechanical behavior of reinforced concrete members, involving multiple concrete cracking and steel yielding and their mutual interaction under the combined action of axial and bend-ing loadings. This thesis aims to develop a sophisticated numerical frac-ture model to predict the cracking processes in quasi-brittle ma-terials like concrete, and the main failure mechanisms of the re-inforced concrete structures in a comprehensive manner. The proposed methodology relies on a diffuse interface model (DIM), based on an inter-element cohesive fracture approach, where co-hesive elements are inserted along all the internal mesh bounda-ries to simulate multiple cracks initiation, propagation and coa-lescence in concrete. Such a model, is used in combination with an embedded truss model (ETM) for steel reinforcing bars in the failure analysis of reinforced concrete structures. In particular, truss elements equipped with an elastoplastic constitutive be-havior are suitably connected to the concrete mesh via a bond-slip interface, in order to capture the interaction with the sur-rounding concrete layers as well as with the neighboring propa-gating cracks. The proposed fracture model takes advantage of a novel mi-cromechanics-based calibration technique, developed and pro-posed in this thesis, to control and/or reduce the well-known mesh dependency issues of the diffuse cohesive approach, re-lated to the artificial compliance in the elastic regime. In this way, the initial stiffness parameters of the cohesive element employed in the diffuse interface model are suitably calibrated by means of a rigorous micromechanical approach, based on the concept of representative volume element. In particular, by performing sev-eral micromechanical analyses two charts have been constructed which provide the dimensionless normal and tangential stiffness parameters as functions of both the Poisson’s ratio of the bulk and the admitted reduction in the overall Young’s modulus after the insertion of the cohesive interfaces. The proposed fracture model has been firstly validated by performing numerical analysis in plain concrete elements, and secondly, employed to analyze the failure mechanisms in exter-nally strengthened reinforced concrete beams. In particular, several numerical simulations, involving pre-notched concrete beams subjected to mode-I loading conditions, have been performed to investigate the capability of the diffuse interface model to predict self-similar crack propagation and to assess the mesh-induced artificial toughening effects, also intro-ducing two new fracture models for comparison purpose. More-over, sensitivity analyses with respect to the mesh size and the mesh orientation have been performed to investigate the mesh dependency properties of the proposed fracture model. Further validation of the proposed diffuse interface model has been pro-vided for plain concrete structures subjected to general mixed-mode loading conditions. The role of the mode-II inelastic parameters (i.e. critical tangential stress and mode-II fracture en-ergy) on the nonlinear behavior of the embedded cohesive inter-faces is investigated in a deeper manner. In particular, two sen-sitivity analyses have been performed by independently varying the mode-II inelastic parameters required by the traction-separa-tion law adopted in the proposed concrete fracture model, in or-der to quantify the above-mentioned artificial toughening effects associated with mode-II crack propagation. Moreover, compari-sons with numerical and experimental results, with reference to mode-I and mixed-mode fracture tests, have been reported, highlighting the effectiveness of the adopted diffuse interface model (DIM) in predicting the failure response in a reliable man-ner. Subsequently, the integrated fracture approach is success-fully employed to predict the nonlinear response of (eventually strengthened) reinforced concrete beams subjected to general loading conditions. Firstly, the failure analysis of reinforced con-crete (RC) beams has been performed to assess the capability of the integrated fracture model to capture multiple crack initiation and propagation. Detailed stress analysis of the tensile reinforce-ment bars has been also reported to verify the capability of the embedded truss model (ETM) of capturing the tension stiffening effect. Secondly, the well-known concrete cover separation phe-nomenon has been predicted by performing complete failure simulations of FRP-strengthened RC elements. To this end, a sin-gle interface model (SIM) has been incorporated in the proposed fracture model to capture the mechanical interaction between the concrete element and the externally bonded reinforced system and to predict eventually debonding phenomena in con-crete/FRP plate interface. Suitable comparisons with available experimental results have clearly shown the reliability and the effectiveness (in terms of numerical accuracy) of the adopted fracture approach, especially in the crack pattern prediction. Fi-nally, the proposed integrated numerical model is used to pre-dict the structural response of ultra high-performance fiber-rein-forced concrete (UHPFRC) structures enhanced with embedded nanomaterials. In this case, the cohesive elements are equipped with a mixed-mode traction-separation law suitably calibrated to account for the toughening effect of the nano-reinforcement. The main numerical outcomes, presented in terms of both global structural response and final crack pattern, show the ability of the proposed approach to predict the load-carrying capacity of such structures, as well as to highlight the role of the embedded nano-reinforcement in the crack width control.Item New composite materials for masonry rehabilitatiom: SRG and FRCM mechanical characterization(2018-06-01) Mazzuca, Stefania; Critelli, Salvatore; Ombres, Luciano; Nanni, AntonioLa caratterizzazione meccanica dei materiali è un processo necessario per la standardizzazione della metodologia di prova, per determinare le proprietà dei materiali necessarie per la progettazione e per valutare le loro prestazioni. Gli SRG rappresentano la più recente tecnologia di riparazione nel contesto dei materiali fibro-rinforzati. Sono un altro strumento tra i metodi di rinforzo del calcestruzzo e della muratura, insieme agli FRCM (Fiber Reinforced Cementitious Matrix) e FRP (Fiber Reinforced Polymer) esistenti. Gli SRG sono emersi come tecnologia promettente e conveniente per il rafforzamento esterno delle strutture. Essi sono costituiti da un tessuto di rinforzo unidirezionale realizzato con trefoli in acciaio ultra resistente, immerso in una matrice cementizia, e sono applicati sulla superficie esterna degli elementi strutturali. Gli SRG forniscono un significativo miglioramento della capacità degli elementi strutturali con un aumento minimo della massa, grazie all’ elevato rapporto tra resistenza e peso. Infatti, l’uso di fibre in acciaio ultra resistente aumenta la duttilità degli elementi rinforzati, favorendo in tal modo le applicazioni in caso di problemi sismici. Inoltre, l’impiego di tessuti a bassa o media densità di massa, consente anche l’uso di matrici a base di cemento. Ciò implica vantaggi in termini di costo, resistenza al fuoco e semplicità nell’applicazione, che sono i tipici limiti dell’uso dei materiali compositi tradizionali. Dato l’attuale livello di conoscenza degli SRG, maggiori investigazioni risultano necessarie. Pertanto, ai fini di questa ricerca, due diversi tipi di tessuto in acciaio, impregnati con due diverse tipologie di matrice, sono stati selezionati. Le maglie del tessuto sono costituite da trefoli di microfili di acciaio ad alta resistenza con diversa densità di massa, ovvero G6 (600 g/m2) e G12 (1200 g/m2). Il tessuto G6 è caratterizzato da una densità di 1,57 trefoli/cm. I trefoli sono ugualmente distanziati di circa 6 mm per ottenere un tessuto con uno spessore equivalente di 0,084 mm. Al contrario, la rete G12 ha una densità di 3,19 trefoli/cm e 0,169 mm di spessore equivalente. Essa è costituita da coppie di trefoli distanti circa 4 mm dalle successive coppie di trefoli, in modo da promuovere l’incastro tra tessuto e matrice. Le matrici sono una malta a base cementizia, GLT, ed una malta a base di calce idraulica, GCF. I tessuti di acciaio, G6 e G12, e le malte, GLT e GCF, sono state combinate per produrre un totale di quattro sistemi SRG, denominati GLT-G6, GLT-G12, GCF-G6 e GCF-G12. Il seguente lavoro, che mira a far avanzare lo stato della metodologia di prova dei materiali compositi a base di matrice cementizia, con l’obiettivo verso la standardizzazione, è stato suddiviso in due parti, a loro volta divise in quattro capitoli. La Prima Parte riporta i seguenti capitoli:Un capitolo introduttivo, che fornisce una breve panoramica dei compositi, concentrandosi sulla classificazione dei compositi a matrice fragile, per fornire un quadro contestuale all'interno del quale gli FRCM e gli SRG sono differenziati. 2. Il secondo capitolo fornisce un contesto evolutivo dei materiali compositi come sistema di rinforzo. Infatti, i materiali compositi fibro-rinforzati a base di matrice cementizia (FRCM) sono una valida alternativa ai compositi fibro-rinforzati a base polimerica (FRP) e hanno acquisito un certo interesse nell'ultimo decennio. In particolare, la necessità di metodi di rinforzo efficaci, versatili ed economicamente vantaggiosi ha incoraggiato i produttori a sviluppare e vendere tessuti in acciaio per scopi di riabilitazione strutturale, in altre parole sistemi di rinforzo in acciaio (SRG). 3. Dato il crescente interesse per l'utilizzo di sistemi compositi a base di matrice cementizia per applicazioni di rinforzo strutturale, le loro proprietà meccaniche devono essere specificate. Nel terzo capitolo, è stato discusso lo sviluppo dei criteri di accettazione per il rinforzo della muratura e del calcestruzzo mediante l’applicazione dei sistemi compositi FRCM e con l'acciaio rinforzato SRG. 4. Programma sperimentale, che valuta la metodologia della prova di trazione, utilizzata per caratterizzare le proprietà del materiale FRCM, in particolare il meccanismo di presa che consente il trasferimento del carico, vale a dire l’afferraggio di tipo clevis o clamp. La Seconda Parte presenta, invece, i risultati degli esperimenti di caratterizzazione eseguiti sui sistemi SRG. Al fine di comprendere il comportamento meccanico dei sistemi di materiale composito a base di matrice cementizia, e quindi di valutarne le prestazioni e la compatibilità con substrati di calcestruzzo e muratura, le seguenti prove sono state effettuate: 1. Prove di compressione della malta cementizia usata come matrice del sistema composito. 2. Prove di trazione del sistema composito; 3. Prove di taglio interlaminare del sistema composito; 4. Prove di legame del sistema composito (Pull-off tests); Tutte le prove sono state eseguite sotto condizioni ambientali di laboratorio (T = 20° e U.R. = 50%). 1. Prove di compressione. Due tipi di matrice, specificamente progettate per il rinforzo strutturale, sono state scelte tra quelle presenti sul mercato, ovvero la malta a base cementizia (GLT) e quella a base di calce idraulica (GCF). Per ogni tipologia di malta, sono stati realizzati cinque provini per mezzo di stampi cubici con lunghezza laterale di 50 mm secondo quanto previsto dalla normativa. I campioni sono stati rimossi dagli stampi dopo un periodo di maturazione di tre, sette, quattordici e ventotto giorni e infine testati con l’aiuto di una macchina di prova universale. Infine, il carico massimo sopportato dal provino durante la prova è stato registrato ed il tipo di rottura è stato annotato. La principale modalità di collasso è stata la rottura a compressione del cubo che risulta avere la struttura conica come desiderato. Sulla base dei test sperimentali svolti, la resistenza della malta a base cementizia, GLT, soddisfa i requisiti della sezione 4.3 del AC434, corrispondente a 17 MPa a 7 giorni e 24 MPa a 28 giorni di stagionatura. Per quanto riguarda la resistenza della malta idraulica a base di calce, GCF, anch’essa soddisfa i requisiti standard, ovvero che la resistenza media a compressione di almeno tre cubi da 50 mm non deve essere inferiore a 1,7 N/mm2 e non superiore di 10,3 N/mm2 a 28 giorni di stagionatura. 2. Prove di trazione. Provini rettangolari con dimensione nominale 510 x 51 x 10 mm sono stati realizzati in casseforme di vetro, applicando un primo strato di malta cementizia (5 mm), il tessuto in fibra e un secondo strato di malta cementizia (5 mm). Dopo un periodo di maturazione di 28 giorni nella camera di umidità, i test sono stati eseguiti utilizzando un telaio di prova universale. Il carico di trazione uni-assiale è stato applicato a tutti gli esemplari mediante il meccanismo di afferraggio di tipo clevis. Il carico è stato applicato sotto modalità di spostamento controllato ad una velocità di 0,25 mm/min e registrato dalla cella di carico integrata nella macchina di prova. La deformazione assiale è stata misurata per mezzo di due estensometri con una lunghezza di 100 mm e 50 mm, posizionati nella regione centrale del campione. I risultati dei test per ciascun coupon testato sono presentati in termini di diagramma resistenza a trazione-deformazione. Dai risultati sperimentali sono state ottenute la forza massima di trazione e la deformazione ultima. Noti questi valori, la resistenza ultima a trazione e il modulo elastico del tratto fessurato sono stati calcolati per mezzo delle equazioni riportate in AC434. Infine, è stata descritta la modalità di collasso per ciascun campione testato. I provini della serie GLT-G6 hanno mostrato una modalità di rottura caratterizzata dalla formazione di una prima fessura all’estremità della zona di incollaggio della piastra metallica. Da lì, lo sviluppo della fessura è continuato per tutta la lunghezza. Infine, il collasso è avvenuto per il distacco della matrice attorno ai trefoli. Questo perché la malta non è penetrata bene nel tessuto e non lo ha impegnato in modo efficace, facilitando quindi lo scorrimento delle fibre. Nel caso della serie GLT-G12, nella zona centrale del provino si è verificata una serie di fessure, monitorate dall’estensometro. Altre fessure si sono formate nella zona di incollaggio della piastra metallica. Da lì, lo sviluppo della fessura è continuato per tutta la lunghezza. Infine, il collasso è avvenuto per il distacco della matrice attorno ai trefoli. Il motivo è che la malta non è stata in grado di penetrare facilmente nel tessuto, perché esso è caratterizzato da una elevata densità di massa (1200 g/m2). I provini della serie GCF-G6 hanno sviluppato due fessure profonde nelle estremità della lunghezza di incollaggio della piastra metallica. Da lì, lo sviluppo delle fessure è continuato per tutta la lunghezza. Il collasso non è stato uguale per tutti i campioni. Infatti, in alcuni casi, la modalità di rottura è caratterizzata dal distacco della matrice attorno ai trefoli; in altri casi, il collasso è dovuto al distacco della piastra dal provino o per lo scorrimento delle fibre. I provini della serie GCF-G12 hanno mostrato una modalità di rottura caratterizzata una serie di fessure nella zona centrale del campione monitorata dall'estensometro. Altre fessure si sono formate nella zona di incollaggio della piastra metallica. Da lì, lo sviluppo della fessura è continuato per tutta la lunghezza. Infine, il collasso è avvenuto per il distacco della matrice attorno ai trefoli. Il motivo è che la malta non è stata in grado di penetrare facilmente nel tessuto, perché il tessuto è caratterizzato da una elevata densità di massa (1200 g/m2). Il collasso non è stato uguale per tutti i campioni. Infatti, in alcuni casi, la modalità di rottura è caratterizzata dal distacco della matrice attorno ai trefoli con conseguente scorrimento delle fibre o allargamento delle fessure, che hanno causano la rottura del provino in più pezzi. 3. Prove di taglio interlaminare. Questo test è una prova di flessione a tre punti su un provino denominato short-beam, e ha lo scopo di determinare la resistenza di taglio interlaminare dei materiali compositi fibro-rinforzati. I campioni sono stati ritagliati da pannelli di dimensioni nominali 330 x 508 mm, dopo una stagionatura di 28 giorni nella camera di umidità. Ogni campione è stato rinforzato con due strati di fibre incorporati in due strati di malta cementizia di 4 mm. Le fibre erano a loro volta divise da un altro sottile strato di malta. Per ciascun prodotto, cinque test sono stati testati sotto condizioni ambientali di controllo. Noto il carico massimo registrato durante la prova, la resistenza ultima della short-beam è stata calcolata per mezzo dell’equazione riportata in ASTM-D2344. Anche in questo caso, le modalità di rottura sono state annotate. I provini rinforzati con il tessuto di acciaio G6 hanno presentato una rottura dovuta alla fessurazione della matrice nel lato sottoposto a tensione. Infatti, in tutti i provini, l'inizio della rottura è caratterizzata da una singola fessura che si propaga dall’intradosso della short-beam verso la regione centrale. Nel caso dei sistemi confezionati con la rete di acciaio G12, la modalità primaria di rottura è stata il taglio interlaminare. Infatti, si è potuto osservare lo sviluppo di due fessure all'interfaccia matrice-fibre che si propagano dal centro del campione alle estremità. La ragione è perché il tessuto G12 ha una densità di massa superiore a quella del tessuto G6 e quindi non consente la completa penetrazione della matrice tra le fibre. Pertanto, il legame all’interfaccia matrice-fibre non è stato efficiente. 4. Prove di pull-off. Per indagare il legame all’ interfaccia rinforzo SRG-substrato, 28 test di pull-off sono stati effettuati su diversi tipi di substrato, ossia blocchi di calcestruzzo, mattoni di argilla e unità di muratura cementizia indicati rispettivamente con la sigla “BTC”, “BTY” e “BTU”. Il rinforzo è stato applicato sul substrato, precedentemente pulito, per uno spessore minimo di 63 mm. Dopo 28 giorni di maturazione, tagli circolari ed esagonali sono stati eseguiti perpendicolarmente al substrato del campione in modo da circoscrivere il disco metallico utilizzato per il test, secondo quanto previsto dalla normativa. I dischi metallici sono stati fissati mediante colla epossidica alla superficie di rinforzo e rappresentano il mezzo attraverso il quale l’area circolare è stata estratta. Il carico di trazione uni-assiale è stato applicato perpendicolare alla superficie di prova utilizzando una macchina di prova pull-off. Il dispositivo di carico a trazione è stato collegato al disco metallico per mezzo di un meccanismo di accoppiamento. La forza di trazione è stata applicata al disco fino a quando non si verifica la rottura. Data il carico ultimo registrato durante la prova, la resistenza massima è stata calcolata per mezzo dell’equazione riportata in ASTM-C1583.La modalità di rottura è stata annotata. Come ci si aspettava, i campioni confezionati con la matrice a base cementizia (GLT) hanno raggiunto i massimi livelli di carico e resistenza. In particolare, il provino BTC-GLT-G6 ha raggiunto il massimo livello di carico e resistenza. Il motivo è che la resistenza a trazione della malta GLT è superiore a quella della malta GCF (malta a base di calce idraulica). Inoltre, la densità del tessuto d’acciaio G6 è inferiore a quella della rete G12, pertanto la malta può penetrare più facilmente tra i trefoli di acciaio. Per quanto appena menzionato, la resistenza a trazione media della serie BTC-GLT-G6 è superiore a quella di BTC-GLT-G12. La modalità principale di collasso del composito SRG è la rottura all’interfaccia matrice-rinforzo, quindi la densità del tessuto è un parametro fondamentale. Infatti, più bassa è la densità di massa e maggiore è la forza di legame. Per questo motivo la serie BTC-GLT-G6 raggiunge un elevato valore di resistenza, perché la matrice può penetrare più facilmente tra i trefoli e aumentare la forza di legame. Tuttavia, nessuna serie raggiunge il limite di resistenza imposto dalla normativa AC434, ad eccezione del campione BTC-GLT-G6. In conclusione, sulla base delle ipotesi che i compositi SRG abbiano una prestazione a lungo termine desiderabile, essi possono essere considerati come una soluzione per il rinforzo delle strutture esistenti in muratura e calcestruzzo. Le considerazioni preliminari ottenute da questo studio rappresentano quindi un primo passo verso lo sviluppo di formule di progettazione adeguate per la caratterizzazione dei sistemi SRG. Tuttavia, ulteriori indagini sperimentali risultano necessarieItem Crack propagation modelling in layered structures by using moving mesh method(2019-05-10) Funari, Marco Francesco; Critelli, Salvatore; Leonetti, PaoloThe study presented in this PhD thesis is focused on development of advanced numerical models to describe crack propagation and interface decohesion phenomena in laminate and sandwich structures. The general idea is to simulate crack tip motion by using a moving mesh methodology to reproduce quasi-static and fast crack propagation phenomena in layered structures. Without going into too much details, the nodes are moved to predict changes of the geometry produced by the crack motion allowing to avoid several remeshing and saving computational time. The thesis presents a series of numerical investigations, which are performed in order to validate the introduced features in the numerical methodology along the development process. The starting point of the research was the investigation of the interface crack propagation phenomena in multilayered structures simulated by using shear deformable beam elements. The theoretical formulation was based on Arbitrary Lagrangian and Eulerian (ALE) methodology and cohesive interface elements, in which weak based moving connections are implemented by using a finite element formulation. In this framework, only the nodes of the computational mesh of the interface region are moved on the basis of the predicted fracture variables, reducing mesh distortions by using continuous rezoning procedures. The use of moving mesh methodology in the proposed model allow us to introduce nonlinear interface elements in a small region containing the process zone, reducing the numerical complexities and efforts, typically involved in standard cohesive approach. Furthermore, this numerical methodology was developed to investigate the strategy commonly adopted to improve the interlaminar strength of composite laminate. Basically, in order to simulate the z-pins reinforced area, a set of discrete nonlinear springs fixed to material domain was introduced. As is well known, a very important feature that should have a numerical model is the capability to simulate both crack onset condition and coalescence phenomena in structures with initial perfect interfaces. To this end, proper script files were carried out to manage the steps involved in the procedure, regarding the geometry variation due to the crack onset, the debonding length definition and the mesh enrichment in the process zone. The numerical strategy could be solved in both static and dynamic frameworks, taking into account time dependent effects produced by the inertial characteristics of the structure and the boundary motion involved by debonding phenomena. In both cases, the governing equations have been integrated by means of proper stop and restart conditions, to modify the computational mesh due to the onset of debonding phenomena. The ability of the proposed model has been verified by simulating several onset configurations, including the case, in which multiple debonding mechanisms with coalescence affect the interfaces. The research project has been focused on the study of the sandwich structure failure modes. From physical and mathematical viewpoints, two main issues are demanding a detailed understanding of the mechanical behaviour of sandwich panels: the propagation of internal macro-cracks in the core and the delamination at skin/core interfaces. To concern the delamination between skin and core, previous numerical strategy, already used in the framework of composite laminate, was generalized simply by modifying the relative displacement between skin (shear deformable beam) and core (2D plane stress formulation). In order to simulate the macro crack propagation in the core, the ALE approach has been generalized in two-dimensional framework. The approach has combined concepts arising from structural mechanics and moving mesh methodology, which was implemented in a unified framework to predict crack growth on the basis of Fracture Mechanics variables. In particular, moving computational nodes were modified starting from a fixed referential coordinate system on the basis of a crack growth criterion to predict directionality and displacement of the tip front. The use of rezoning mesh methods coupled with a proper advancing crack growth scheme has ensured the consistency of mesh motion with small distortions and an unaltered mesh typology. In addition, the moving grid was modified from the initial configuration in such a way that the recourse to remeshing procedures has been strongly reduced. Numerical formulation and its computational implementation have shown how the proposed approach can be easily embedded in classical finite element software. Numerical examples in presence of internal material discontinuities and comparisons with existing data obtained by advanced numerical approaches and experimental data have been proposed to check the validity of the formulation. Furthermore, the crack propagation in the core of sandwich structures has been analysed on the basis of fracture parameters experimentally determined on commercially available foams. The (summary) thesis comprises the following: Chapter 1 - Introduction (thesis topics, literature review, aims and scope); Chapter 2 and 3 - present theoretical formulation and numerical implementation followed by results of the numerical methodology to describe crack onset, propagation and coalescence respectively; Chapters 4 - reports the numerical investigation about sandwich structure failure modes and the generalization of the ALE approach to simulate crack propagation in 2D continuum (core); Chapters 5 -presents the conclusions and future works