Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato

Permanent URI for this collectionhttps://lisa.unical.it/handle/10955/31

Questa collezione raccoglie le Tesi di Dottorato afferenti al Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica dell'Università della Calabria.

Browse

Search Results

Now showing 1 - 10 of 188
  • Thumbnail Image
    Item
    Simulation-based optimization in port logistics
    (2017) Mazza, Rina Mary; Grandinetti, Lucio; Legato, Pasquale
  • Thumbnail Image
    Item
    Resource reservation protocol and predictive algorithms for QoS support in wireless environments
    (2008-01) Fazio, Peppino; Talia, Domenico; Marano, Salvatore
  • Thumbnail Image
    Item
    Controllo ambientale. Campagne di monitoraggio atmosferico
    (2012-11-29) Gensini, Mario; De Cindio, Bruno; Perrone, Nicola; Sprovieri, Francesca
    La normativa ambientale riveste una importanza fondamentale per chi effettua ricerca in campo ambientale poiché, da un lato, definisce lo stato attuale ed i limiti vigenti; dall’altro, evidenzia proprio tali limiti e permette al ricercatore attento di intraprendere le necessarie azioni correttive affinché eventuali vuoti normativi possano essere colmati. L’analisi della normativa, lo studio delle tecniche analitiche per la determinazione degli inquinanti, l’analisi della strumentazione necessaria al monitoraggio dell’inquinamento atmosferico hanno mostrato che la ricerca in questo campo è molto vivace e si ha un continuo aggiornamento sia tecnico che normativo. I dati ambientali devono essere soprattutto dati di qualità ed implementare un processo sistemico di qualità, non può sicuramente essere un fatto episodico o di semplice attuazione. La ricerca di metodiche di analisi dei dati raccolti, di visualizzazione degli stessi dati sono punti fondamentali per una corretta comprensione delle dinamiche ambientali sia per il trasporto degli inquinanti che per la chimica degli stessi
  • Thumbnail Image
    Item
    Investigation of Silicon Solar Cells by Means of Electro-Optical Numerical Simulations
    (2012-12-17) De Rose, Raffaele; Bilotta, Eleonora; Lanuzza, Marco
  • Thumbnail Image
    Item
    Gene expression as a digital communication system
    (2018-02-02) Cevallos Vilacrés, Yesenia Elizabeth; Pantano, Pietro; Marano, Salvatore
    This PhD thesis extends upon the information theories of digital communication systems to analyse biological communications (nanocommunications) in order to accurately model biological communication as digital communication by providing an essential analysis of the analogies between both systems. As such, this work analysed gene expression from two perspectives: digital communication systems as a general perspective and internetwork systems as a specific perspective (keeping in mind that digital communication networks are a subarea of digital communication systems). First, this work presents a novel layered network model that represents gene expression and the role of the Golgi apparatus as an internetwork router to transmit proteins to a target organ. Second, supported by the aforementioned layered network model, this work presents a digital communication system end-to-end model that represents gene expression with regard to the production of proteinaceous hormones in the endocrine system by using Shannon’s theorem. In addition, each molecular process encoding biological information, from the transcription and translation of deoxyribonucleic acid (DNA) to hormone signalling, is represented by a layered network model. These models apply the general advantages of digital internetworks and systems (i.e., performance and efficiency) to the transmission of biological information in gene expression systems. The proposed models and analysis define the duality between digital and biological communication systems, and the results herein can be used to overcome the disadvantages of both systems. One of the most important applications of the current study is the potential use of the characteristics of both communication systems in the nano/bio-hybrid medical field (i.e., for the treatment of diseases such as cancer). Hence, the analysis presented in this study may prevent side effects by specifically enhancing the transmission of information to a suitable destination (i.e., to specific target organs), thereby facilitating the development of optimal and less expensive treatments.
  • Thumbnail Image
    Item
    Bio-inspired techniques applied to the coordination of a swarm of robots involved in multiple tasks
    (2017-11-13) Palmieri, Nunzia; Crupi, Felice; Marano, Salvatore; Yang, Xin-She
    La tematica di ricerca trattata in questa tesi riguarda il problema di coordinamento di robot attraverso l’utilizzo di algoritmi decentralizzati che usano meccanismi basati sulla Swarm Intelligence. Tali tecniche hanno lo scopo di migliorare le capacità di ogni robot, ciascuno dei quali ha risorse limitate, nel prendere decisioni su dove muoversi o su cosa fare basandosi su semplici regole ed interazioni locali. Negli ultimi anni, infatti, c’è un crescente interesse a risolvere alcuni problemi nell’ambito della robotica attraverso algoritmi che traggono ispirazione da fenomeni naturali e da alcuni animali in natura che esibiscono comportamenti sociali sviluppati e con una notevole capacità di adattamento ambientale. Nel campo della robotica, un aspetto cruciale è la coordinazione dei robot affinché possano compiere dei task in maniera cooperativa. La coordinazione deve essere tale da permettere agli agenti di adattarsi alle condizioni dinamiche dell’ambiente circostante conferendo al sistema caratteristiche di robustezza, flessibilità e affidabilità. Più dettagliatamente, lo scenario di riferimento è un’area nella quale sono disseminati degli oggetti, e dove operano un certo numero di robot che hanno come scopo quello di rilevare gli oggetti stessi e manipolarli. Ciascun robot non conosce la posizione di tali oggetti e non ha conoscenza né dell’ambiente che lo circonda, né della posizione degli altri robot. Il problema è diviso in due sotto-problemi. Un primo problema riguarda l’esplorazione dell’area e l’altro la manipolazione degli oggetti. Essenzialmente, ogni robot esplora in maniera indipendente l’ambiente basandosi sulla propria posizione attuale e sulla posizione degli altri mediante un meccanismo di comunicazione indiretta (stigmergia). Nella fase di manipolazione degli oggetti, invece, è utilizzato un meccanismo di comunicazione diretta attraverso l’uso di una comunicazione wireless. L’algoritmo di esplorazione dell’area trae ispirazione dal comportamento di alcuni tipi di insetti in natura, come le formiche,che utilizzano l’ambiente nel quale vivono come mezzo di comunicazione (stigmergia).Successivamente, quando un robot rileva la presenza di un oggetto, sono stati proposti due approcci. Nel primo caso le informazioni sono diffuse tra i robot secondo un meccanismo di comunicazione“one hop”ed alcune meta-euristiche di derivazione naturale sono state utilizzate come meccanismo decisionale e di coordinamento Il secondo approccio fa riferimento ad una comunicazione “multi-hop” ed è stato proposto un protocollo di coordinamento, anche esso di derivazione biologica. Entrambi gli approcci si basano su meccanismi decentralizzati dove non esiste nessun leader che dia direttive gerarchiche e ciascun robot prende le sue decisioni in maniera autonoma sulla base degli eventi che accadono nell’ambiente. Globalmente si ha un sistema auto organizzato, flessibile ed altamente adattabile. Per testare gli approcci è stato costruito un simulatore sul quale sono stati sviluppati numerosi studi allo scopo di valutare gli algoritmi proposti, la loro efficienza nonché stimare come le principali variabili ed i parametri del modello possono influenzarela soluzione finale.
  • Thumbnail Image
    Item
    Design of point contact solar cell by means of 3D numerical simulations
    (Università della Calabria -Dottorato di Ricerca in Information and Communication Engineering For Pervasive Intelligent Environments, 2017-11-13) Guerra González, Noemi Lisette; Crupi, Felice
    Nikola Tesla said that "the sun maintains all human life and supplies all human energy". As a matter of fact, sun furnishes with energy all forms of living, e.g., starting from the photosynthesis process, plants absorb solar radiation and convert it into stored energy for growth and development, thus supporting life on earth. For this reason, sun is considered one of the most important and plentiful sources of renewable energies. This star is about 4.6 billion years old with another 5 billion years of hydrogen fuel to burn in its lifetime. This characteristic gives to all living creatures a sustainable and clean energy source that will not run out anytime soon. In particular, solar power is the primary source of electrical and thermal energy, produced by directly exploiting the highest levels of the irradiated energy from the sun to our planet. Therefore, solar energy offers many benefits such as no-releasing greenhouse gases (GHGs) or other harmful gases in the atmosphere, it is economically feasible in urban and rural areas, and evenly distributed across the planet. Moreover, as it was mentioned above, solar power is also essentially infinite, reason why it is close to be the largest source of electricity in the world by 2050. On the other hand, most of the energy forms available on earth arise directly from the solar energy, including wind, hydro, biomass and fossil fuels, with some exceptions like nuclear and geothermal energies. Accordingly, solar photovoltaic (PV) is a technology capable of converting the inexhaustible solar energy into electricity by employing the electronic properties of semiconductor materials, representing one of the most promising ways for generating electricity, as an attainable and smart option to replace conventional fossil fuels. PV energy is also a renewable, versatile technology that can be used for almost anything that requires electricity, from small and remote applications to large, central power stations. Solar cell technology is undergoing a transition to a new generation of efficient, low-cost products based on certain semiconductor and photoactive materials. Furthermore, it has definite environmental advantages over competing electricity generation technologies, and the PV industry follows a pro-active life-cycle approach to prevent future environmental damage and to sustain these advantages. An issue with potential environmental implications is the decommissioning of solar cell modules at the end of their useful life, which is expected to about 30 years. A viable answer is recycling or re-used them in some ways when they are no longer useful, by implementing collection/recycling infrastructure based on current and emerging technologies. Some feasibility studies show that the technology of end-of-life management and recycling of PV modules already exists and costs associated with recycling are not excessive. In particular, Photovoltaic is a friendly and an excellent alternative to meet growing global energy-demand by producing clean and sustainable electricity that can replace conventional fossil fuels and thus reducing the negative greenhouse effects (see section 1.1). Reasoning from this fact, solar cell specialists have been contributing to the development of advanced PV systems from a costly space technology to affordable terrestrial energy applications. Actually, since the early 1980s, PV research activities have been obtaining significant improvements in the performance of diverse photovoltaic applications. A new generation of low-cost products based on thin films of photoactive materials (e.g., amorphous silicon, copper indium diselenide (CIS), cadmium telluride (CdTe), and film crystalline silicon) deposited on inexpensive substrates, increase the prospects of rapid commercialization. In particular, the photovoltaic industry has focused on the development of feasible and high-efficiency solar cell devices by using accessible semiconductor materials that reduce production costs. Nonetheless, photovoltaic applications must improve their performance and market competitiveness in order to increase their global install capacity. In this context, the design of innovative solar cell structures along with the development of advanced manufacturing processes are key elements for the optimization of a PV system. Nowadays, TCAD modeling is a powerful tool for the analysis, design, and manufacturing of photovoltaic devices. In fact, the use of a properly calibrated TCAD model allows investigating the operation of the studied solar cells in a reliable and a detailed way, as well as identifying appropriate optimization strategies, while reducing costs, test time and production. Thereby, this Ph.D. thesis is focused on a research activity aimed to the analysis and optimization of solar cells with Interdigitated Back Contact (IBC) crystalline silicon substrate c-Si, also known as Back Contact-Back Junction (BC-BJ). This type of solar cell consists of a design where both metal contacts are located on the bottom of the silicon wafer, simplifying the cell interconnection at module-level. Characteristics that guarantee high-conversion efficiency due to the absence of front-contact shadowing losses. In particular, the main purpose of this thesis is to investigate the dominant physical mechanisms that limit the conversion efficiency of these devices by using electro-optical numerical simulations. Three-dimensional (3D) TCAD-based simulations were executed to analyze the performance of an IBC solar cell featuring point-contacts (PC) as a function of the metallization fraction. This scheme was also compared with a similar IBC structure featuring linear-contacts (LC) on the rear side of the device. In addition, the impact of introducing a selective emitter scheme (SE) in the PC cell was evaluated. The analyses were carried out by varying geometric and/or process parameters (for example, the size and shape of metalcontacts, doping profiles, carrier lifetime, and recombination rates). This approach provides a realistic and an in-depth view of the behavior of the studied IBC solar cells and also furnishes with useful information to optimize the architecture design of the device in order to enhance the conversion efficiency and minimize production costs.
  • Thumbnail Image
    Item
    Efficient incremental algorithms for handling graph data
    (2017-11-13) Quintana Lopez, Ximena Alexandra; Crupi, Felice; Greco, Sergio;